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OPTIMAL PREDICTION PERIODS FOR NEW AND OLD VOLATILITY INDEXES IN USA AND GERMAN 

MARKETS 

 
Abstract: In 1993, the Chicago Board of Options Exchange (CBOE) introduced the 
VXO, a volatility index based on implied volatilities on S&P 100 index. In 2003, the 
CBOE changed their volatility index design and introduced the VIX in order to enhance 
its economic significance and to facilitate hedging. In this paper, using data from the 
USA and the German stock markets, we compare the forecasting capability of the 
volatility indexes with that of historical volatility and conditional volatility models. 

 
Following this analysis, we have studied whether it may be the case that volatility 
indexes forecast the realized volatilities more accurately for a different period to 30   (or 
45) days, attempting to answer the question: what time horizon is the informational 
content of volatility indexes best adjusted for? The optimal prediction period of each 
volatility index (VXO, VIX, VDAX and V1X) in terms of coefficient of determination 
is analysed. 

 
The results identify a difference between the observed optimal forecasting period and 
the theoretical one. This could be explained from different perspectives such as the 
index’s design, investor cognitive bias or overreaction. 
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1. INTRODUCTION 

Volatility is a key concern in financial markets; a lot of effort has been put into 
predicting the future volatility of asset prices to try to take advantage of market 
opportunities. Mainly, practitioners have used two predictors: the historical volatility 
(HV), which is a statistical measure of past price movements of the assets; and the 
implied volatility (IV), which is calculated from prices of options traded in the market, 
considering a given valuation model and assuming that the rest of parameters involved 
are known. Therefore, HV is a measure of how prices have moved in the past and its 
usefulness is based on considering that such volatility might be repeated again in the 
future. By contrast, IV is a measure based on traded options’ prices, which includes 
information on investors’ sentiment about the underlying volatility until the maturity of 
the option. Most studies indicate that IV is the best indicator of future volatility, for 
example Blair et al. (2001) find that the most relevant information is found in the IV. 

 

However, the use of IV also involves several problems, there are call and put options, 
there are different strike prices and at the money (ATM) options are not always 
available. Furthermore, maturity decreases as time progresses (if volatility of today is 
referred to a 25-day period, the volatility of tomorrow will be for a 24 day period and so 
on), whereas the reference period of the IV is assumed constant. Thus, using IV as a 
predictor of future volatility is not a straightforward task. In this sense, in 1973 the 
possibility of creating a volatility index arose, which could bring together information 
from a set of options and could homogenize the prediction period. Different ways of 
calculating this index has been proposed. In 1993, the Chicago Board of Exchange 
(CBOE) developed the VIX as a measure of the level of implied volatility of the USA 
market. Subsequently, other markets have joined this initiative and set up their own 
volatility indexes, among these are the German, Russian and Japanese ones. 

 

The original volatility index design proposed by CBOE suffered from some drawbacks, 
mainly the difficulties to hedge the corresponding volatility swap contract, so in 2003, 
CBOE changed the methodology for calculating the volatility index and the rest of the 
markets decided to adopt their design. Thus, a first aim of this paper is to analyse how 
the change in methodology has increased or decreased the predictive power of the  
index. We focus on volatility indexes of the American and German markets, both in its 
original version (VXO and VDAX respectively) and the ones currently used (VIX and 
V1X, respectively), of which large historical series are available, allowing comparisons 
to be made to determine whether the change in the index calculation methodology has 
led to an improvement or not in its ability to predict realised volatility. 

 

In addition, Car and Wu (2006) and Luo and Zhang (2012 ), among others, have studied 
the information contained in the volatility index about realized volatility, finding that  
the index provides more information than the historical volatility or the volatilities 
obtained with a conditional volatility model . However, in all these studies, a 
relationship is established between the index and realized volatility for the same time 
period (30 calendar days). Luo and Zhang (2012) go further and consider different time 
periods for both the VIX and realized volatility, though always establishing a 
relationship  of  equal  maturities  between  both  values.  In  this  paper,  we  propose to 
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change the period of calculation for realized volatility trying to find the period that best 
corresponds to the volatility indexes’ forecasting. This could be quite different from the 
expected ones, since the value of the volatility index is a weighting of volatilities (or 
variances) related to options whose maturities do not match the standard period for 
which the index is designed. 

 

The rest of the paper is structured as follows. In the next section, the four analysed 
indexes (VXO, VIX, VDAX and V1X) are briefly introduced, their historical behaviour 
is discussed and a descriptive analysis of the series is performed. The third section 
compares the predictive ability of volatility indexes with the historical volatility model 
and the conditional volatility GARCH(1,1) model. Section four presents the main 
contribution of the paper: the determination of the optimal prediction period for the 
volatility indexes in terms of coefficient of determination. Finally, in the conclusion, the 
most relevant results of the analysis are highlighted. 

 
2. VOLALITY INDEXES IN FINANCIAL MARKETS 

 
The first market to introduce a volatility index was the CBOE that adopted the VIX in 
February 1993 as an indicator of the volatility of options on the S&P 100 (OEX). It is 
mainly based on the proposal of Cox and Rubinstein (1985) in relation to the weight of 
maturities and strike prices. Later, in September 2003, the new VIX was introduced, 
based on the S&P 500 (SPX) and using the price of the options instead of IV to build  
the index. The old VIX was renamed as VXO, preserving the original name VIX for the 
new one. 

 

Gradually, other countries have incorporated volatility indexes into their markets. Thus, 
in the German market, the VDAX is calculated from 1994 in a fairly similar form to the 
old VIX, and since 2007 it has been calculated according to the new methodology of the 
new VIX. Since October 1997, MONEP has calculated two indexes of volatility on the 
CAC-40, the VX1 and VX6; building on the work of Brenner and Galai (1989), and 
since 2007 has also used the new VIX methodology for calculating the VCAC. More 
recently, other countries such as Canada (TSX VIX), Japan (VXJ), Russia (RTSVX), 
Australia (ASX VIX) or India (India VIX) have incorporated volatility indexes into  
their markets, following the same methodology of the CBOE for VIX in its  new 
version. 

 

2.1 The design of volatility indexes 
The VXO is calculated from the IV using the Black-Scholes model over a set of eight 
options on the S&P 100 index, four calls and four puts, close to ATM within the two 
nearest times to maturity. A detailed explanation about VXO calculation can be found  
in Whaley (1993). Briefly, the procedure consists of: (1) selecting the IV of each chosen 
option  and  multiplying  it  by  a  factor  of     30 22   to  compress  the  initial   calendar 
volatility measure (on an actual/365 basis) in the approximate trading days. This first 
step has a drawback in that the volatility levels are artificially increased and the  
resulting index is upward biased. (2) The volatilities are averaged in successive steps 
until obtaining the VXO, first for each maturity (near and next) and strike (above and 
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below the underlying price); calls and puts IV are averaged by averaging between the 
implied volatilities of calls and puts at each maturity. It is possible to some extent to 
reduce potential biases caused by the different reactions of both types of options to 
changes in the underlying. For example, when the market moves upward very quickly a 
positive (negative) bias is produced in the call (put). (3) The next step is to average the 
volatilities of the different strikes for each maturity. (4) Finally, the averaged values of 
each maturity are standardized to a 22-day period using linear interpolation: 

 

where σ1 is the averaged IV for the nearest maturity, T1 is the number of days until the 
nearest maturity date, σ2 is the averaged IV for the next time to maturity and T2 is the 
number of days until the next time to maturity. 

 

The VXO index is based on a weighted Black Scholes implied volatility model, and is, 
thus, highly dependent on this specific option valuation model. VXO index can be 
interpreted as an accurate approximation of the volatility swap rate, whose payoff is 
obtained with the realized volatility. However, it is hard to find a replica portfolio to 
hedge this volatility swap contract. 

 

The VXO design was disputed by academics and practitioners, and on September 23, 
2003, the CBOE adopted a new methodology for calculating the VIX index. This 
change involved two major developments: 1) replacing the S&P 100 for the S&P 500, 
based on the greater liquidity of the latter, 2) modifying the calculation method 
replacing the IVs with a weighted sum of OTM (out of the money) option prices. 

 

The generalized formula used to calculate the daily variance is1: 

σ 2  =  2 ∑ ∆Ki  erT Q(K ) − 1  F 
  


2 

−1 
 

where: 

• σ 2 

T   i K 2 

 
the daily variance 

i T  K  

• T the time to expiration 
• F the forward index level derived from index option prices 
• Ko the first strike below the forward index level, F 
• Ki the strike price of ith  out of the money option;       a call if 

 
 
Ki  > Ko 

 
 
 
and a 

put if Ki  < Ko ; both put and call if Ki  = Ko 

• ∆Ki interval between strike prices, half the difference between the strike on 
either side of Ki  

∆Ki = Ki+1  − Ki−1 

2 
 
 

 

 

1 More information about VIX can be obtained at www.cboe.com 

• r risk-free interest rate to expiration 
• Q(Ki ) the midpoint of the bid-ask spread for each option with strike Ki 

http://www.cboe.com/
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And finally, this is adjusted to obtain the VIX: 
 
 
 

VIX = 100 
  

With the new design, the VIX index is an approximation of the variance swap rate 
which payoff is obtained with the realized variance. This is one advantage of VIX 
because a variance swap contract can be hedged only with a static position in a portfolio 
of options and a dynamic position in futures trading. 

 

Basically, the VIX approximates the variance swap rate on SPX and the old VXO 
approximates the volatility swap rate on OEX. Payoffs to variance swap contracts are 
much easier to replicate/hedge than payoffs to volatility swaps. Hence, CBOE switched 
to the new VIX and have indeed launched futures and options on the new VIX. 

 

The procedure to calculate the German index, VDAX2, is quite similar to the one for 
VXO but differs in two technical aspects. First, the reference period is 45 calendar days 
and no trading-day conversion is made. Second, the calculation for the ATM position is 
performed on the underlying forward price for the given maturity. Therefore, it is a 
requirement to calculate the forward price of the DAX (German stock index market). If 
a DAX future contract exists, whose maturity matches the given date, the price of it is 
taken as the forward price; otherwise it is calculated by linearly interpolating the prices 
of futures for the previous and following maturities. 

 

For each maturity, similar to the VXO, four options are chosen (two calls and two puts), 
whose strikes are the closest above and below of the previously calculated forward  
price. These options are used to calculate the implied volatility, following the steps 
explained above for the VXO, except for the last one because a 45-day period is 
considered. 

 
 
 
 
 

2 More information about VDAX and VDAX-NEW can be obtained at www.dax-indices.com. 
 

The VDAX-New (V1X code) is calculated identically to the VIX, but using the DAX 
German index, so no further explanation is required. 

 

2.2 Historical analysis of the series 

Using historical data of closing prices of options on the S&P 500 and the S&P 100 
indexes, the CBOE has calculated the values of the VIX since 1990 and the VXO since 

365 Var 
12 30 

http://www.dax-indices.com/
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1987, and currently still continues to calculate both indexes. Deutsche Börse, for the 
German market, has calculated values of the VDAX and of the V1X since 1992 and it 
also continues to publish both indexes. 

 
The common interval ranging from April 2, 1992 to December 30, 2011, which  
involves 4997 negotiation days, was chosen for this analysis. In addition to the four 
volatility indexes (VIX, VXO, VDAX and V1X), we analysed the 30 calendar days 
realized volatility for the market indexes: S&P 100 (VXO), S&P 500 (VIX) and DAX 
(V1X): 

 
 
 

R 
t +1,t +30 (2.1) 

 

where rt +k  = ln St +k St +k −1 is  the  daily  return  of  the  index  at  the  moment        t+k, 
representing S the daily close price on the date specified by the sub index, rt ,t +30 is the 
30 calendar day average return and m is the actual number of trading days for each 
period3. 

 
For the VDAX, a 45-calendar day realized volatility is considered: 

 
 
 

R 
t +1,t +45 

 
(2.2) 

 
 
 

The above daily volatilities are annualized by multiplying by the root of 250. 
 
 
 

3 Traditionally a constant period of 22 trading days is used, but in this paper, the exact number of trading 
days for each of the 30 calendar-day period is used. 

   1   ∑ 
m 

m −1 (r t +k t ,t +30 − r )2 

k =1 

   1   ∑ 
m 

m −1 (r t +k t ,t +45 − r )2 

k =1 

σ 

σ 

= 

= 



7  

 

TABLE 1. MAIN STATISTICAL INDICATORS OF VOLATILITY INDEX AND REALIZED 
VOLATILITY FROM APRIL 2, 1992 TO DECEMBER 30, 2011 

 

USA Germany 

 RV30D 
S&P500 VIX RV30D 

S&P100 VXO VXOA RV30D 
DAX V1X RV45D 

DAX VDAX 

Mean 16.39 20.59 16.6 21.26 18.20 20.73 23.76 20.91 22.27 
Stand. 
Dev. 10.17 8.59 10.1 9.38 8.03 10.99 10.22 10.65 9.04 

Median 13.93 19.17 13.95 19.92 17.06 17.57 21.21 17.89 20.1 
Excess 
Kurt. 10.92 6.26 9.61 5.53 5.53 3.65 2.84 3.22 2.27 

Skewness 2.66 1.91 2.48 1.77 1.77 1.73 1.56 1.67 1.44 

Minimum 4.73 9.31 4.5 9.04 7.74 4.68 9.35 5.83 9.36 

Maximum 82.62 80.86 80.9 87.24 74.71 80.65 83.23 75.49 74 

 
 

In Table 1, the main statistics of the four volatility indexes (VIX, VXO, V1X and 
VDAX) are summarised, as well as their corresponding 30-day realized volatility (45- 
days for VDAX). The mean and median values of the volatility indexes are higher than 
the mean and median values of the realized volatility of the indexes they are calculated 
on. Conversely, standard deviation, skewness and excess kurtosis are higher for realized 
volatility series than for the volatility indexes. Generally, the volatility levels show 
positive skewness and excess kurtosis, which can be explained by the arrival of 
significant leaps in the information series (Eraker et al., 2003). 

 

Finally, it is also noteworthy that the minimum values of the four volatility indexes is 
around 9%, while the minimum volatility realized in the markets is around 5%. Thus, 
the differences between the indexes and the respective realized volatilities are nearly 
100%. Maximum values of volatility reach about 80%. 

 

Table 1 also includes statistics for VXOA, which takes into account the  artificial 
upward bias used in  VXO calculation,  as  noted by Carr  and Wu (2006). So  we   have 
scaled back the conversion in the VXO, defining  VXOA = 22 30VXO 

Now, the results agree with the expected ones, VIX is higher than VXOA, as V1X is 
higher than VDAX. VIX calculation uses a square root of total variance (E[WT])0.5, 
which is greater or equal to realized volatility E[(WT)0.5], as we can expect by the 
convexity adjustment argument. 

 

The volatility indexes are considered a barometer of investor fear. The greater the fear, 
the greater the slope of market price movements is and the higher the index value. In 
this sense, taking as an example the VIX and the S&P 500 for the period 2000-2012  
(see Figure 1), three clear periods can be highlighted: 

 
1) Between the years 2000 and 2003, the dotcom bubble bursts, and the S&P 500 
regresses from record highs of 1400    to 800 points, while the VIX increases from 
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20% to 45% in August 2002. 
 

2) Between the years 2003 and 2007, the S&P 500 index slowly recovered the 
maximum values of the previous period to nearly 1500 points. In this stage of 
growth and stability (at least the absence of bad news), the VIX decreased to  
levels of 10%, close to the historical minimum registered on December 22th,  
1993, 9.31%. 

 
3) Between the years 2007 and 2010, as a result of the 2008 Financial Crisis, the 
S&P 500 index went down 45% from its 2007 high, and the VIX increased to a 
maximum of 80.86% on Nov 22th, 2008. 

 

Indeed VIX can be used to predict future returns, with the predictive power being found 
to be more significant in a volatile bear market (Chung et al. 2011; Rosillo et al. 2014). 

 
 

Figure 1. VIX, RV30D AND S&P500 DAILY CLOSING PRICES 
JANUARY 1ST 2000 TO DECEMBER 31ST 2011 

 
 
Similarly, figure 2 shows volatility index V1X, 30-day realized volatility and daily 
closing prices for the DAX German stock index. 



9  

 
 

Figure 2. V1X, RV30D AND DAX DAILY CLOSING PRICES 
JANUARY 1ST 2000 TO DECEMBER 31ST 2011 

 
 
In Figure 3, the differences between the VXOA and VIX indexes for the period April 2, 
1992 to 30 December 2011 are shown. The average difference (VXOA - VIX) is, for the 
analysed period, -2.39, with a maximum of 3.69 in October 2008 and a minimum also in 
October 2008 of -11.17. In addition, the direction of the changes in both  indexes 
matches 83% of the days. 

 
 

Figure 3. DIFFERENCES (VXO-VIX) IN THE PERIOD APRIL 2ND 1992 TO DECEMBER 30TH 2011. 
 

The same analysis is performed using the VDAX and V1X, whose differences (VDAX - 
V1X) are represented graphically in Figure 4. The results show that the average 
difference is -1.48, with a maximum difference of 7.52 in October 1992 and a minimum 
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of -20.43 in October 2008. The directional matching in the price movements is also 
83%. 

Figure 4. DIFFERENCES (VDAX-V1X) FROM APRIL 2ND 1992 TO DECEMBER 30TH 2011. 
 
 
To evaluate whether the change in methodology provides truly different values, a mean 
difference test is performed. The null hypothesis is that there are no differences between 
the old and new values of the indexes. For the USA market, the null hypothesis is not 
accepted, so statistically significant differences exist between the values of the VXOA 
and VIX (p-value = 0.0000). For the German market, the same result is obtained (p- 
value = 1.495e-15). According to these results, the change in methodology has led to 
statistically significant different values, so in the next section we analyse whether these 
changes result in a greater predictive power. 

 
3. VOLATILITY AND VARIANCE FORECASTING 

 
In order to analyse whether the information embedded within the volatility indexes can 
be used to improve the volatility and variance predictions, we perform linear regressions 
and compare these results with two classical benchmarks: the historical volatility and  
the conditional volatility GARCH (1,1) model. 

 

The informational content of the forecasts is gauged via Mincer-Zarnowitz type 
regressions  of  the  observed  T-day  realized  volatility  on  the  corresponding forecast, 
ο R = α + βσ j    + u , where j denotes the jth forecasting method. 

t +1,t +T t t 
 
 

Several authors, like Fleming et al. (1995), have observed that significant informational 
content exists in the implied volatility of the options. However, authors such as Canina 
and Figlewski (1993), Day and Lewis (1992) and Christensen and Prabhala (1998)  
claim not to have observed any correlation between the ATM implied volatility and 
realized volatility. These controversial results, as noted by Blair et al. (2001), can be 
explained since the implied volatility series used in these studies could contain 
significant measurement errors, whose magnitude is unknown. 
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Indeed, there may be many reasons that lead to this erroneous specification of implied 
volatility, but almost all are due to the complexity of the data: options are never 
completely at-the-money, there are very large bid-ask spreads in comparison to option 
prices, volatility is distorted by the impact of market commissions, the remaining time  
to maturity decreases with the life of the option, etc.. Another possible source of error is 
the use of an inappropriate option valuation model to evaluate the implied volatility, for 
example, using a European option model to assess American options, as is the case of 
the S&P100. 

 

Regarding this, volatility indexes overcome some of the above problems, diminishing 
the measurement errors. All these considerations seem to point to a better performance 
of the VIX in forecasting the realised volatility or variance than other commonly used 
models, however, it must still be proved empirically. 

 

The data used in this section are the daily returns of the market indexes: S&P 100, S&P 
500 and DAX, along with the values for the analysed volatility indexes: VXO, VIX, 
V1X and VDAX. We analyse the common period 1992-2012, and we compare the 
realized volatility or variance of returns with the predictions from the different models 
used. 

 

3.1 Prediction models 
There is no general consensus on how to measure realized volatility. However, the usual 
way is to calculate realised volatility through the standard deviation of future 
performance, as shown by Andersen and Bollerslev (1998), Andersen et al. (2001) and 
Blair et al. (2001). 

 

Our goal is to evaluate the usefulness of the volatility indexes studied in the previous 
section as forecasters of realized volatility or variance within the referred period. For the 
case of T calendar days, we would have: 

 
 
 

R 
t +1,t +T 

 
 
 
where rt+k  is the daily return of the market index (S&P 100, S&P 500 or DAX) at the 
moment t+k, and rt ,t +T is the average return of the T calendar days considered (with    T 
equal to 30 or 45 calendar days, according to the analysed market index), and m is the 
effective number of trading days. 

 

We are going to analyse the following regression models: 
 
 

σ R = α + βσ H + u (3.1) 
t +1,t +T t −(T −1),t t 

   1   ∑ 
m 

m −1 (r t +k t ,t +T − r )2 

k =1 
σ = 
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250 

σ R = α + βσ G + u (3.2) 
t +1,t +T t +1,t +T t 

σ R = α + β VX + u (3.3) 
t +1,t +T t t 

 
 

H 
t −(T −1),t is the historical volatility of the T days prior to the close of the market 

on day t; G 
t +1,t +T , is the conditional volatility GARCH(1,1) predicted for  T days    later 

and  VXt   is the close value of the volatility index on day t. 
 
Since the VIX and V1X are designed to capture the variance expectations of their 
markets, we should expect VIX and V1X to forecast variance better and VXO and 
VDAX to forecast volatility better. In this sense, we also perform the analysis in terms 
of variance, in order to analyse in greater depth the relation between the realized 
variance and the proposed predictors, in this case: historical variance, conditional 
variance and squared volatility index. 

 
 

(σ R )2  = α + β (σ H )2    + u (3.4) 
t +1,t +T t −(T −1),t t 

(σ R )2  = α + β (σ G )2    + u (3.5) 
t +1,t +T t +1,t +T t 

(σ R )2 = α + β VX2 + u (3.6) 
t +1,t +T t t 

 
 

Models (3.1) and (3.4) are based on historical volatility and act as a naïve benchmark. 
The historical volatility is calculated as the standard deviation of daily returns for the 
current day and the past T-1 days, rt, rt-1,...,rt-(T-1): 

 
H 

t −(T −1),t (3.7) 
 
 
 

The results are annualized by multiplying by . 
 
 

Models (3.2) and (3.5) are based on GARCH (1,1) conditional volatility as proposed by 
Bollerslev (1986).  We assume that the  daily returns  are distributed according     to  the 
model   rt    = C + εt ,  where   εt    follows  a   N (0,σ  ),  C  is  a  constant  and   σ  is  the 2 

t 

conditional volatility characterized by 
 
 

σ 2  = ω +α ε 2   + β σ 2 (3.8) 
t 1    t −1 1     t −1 

   1   ∑ 
m 

m −1 (r t −k +1 t −(T −1),t − r )2 
k =1 

where σ 

σ 

σ 

t 

= 
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250 

t +1 t +T 

Once the model is estimated, for each t we can make predictions of the conditional 
variance for the next T days, σ 2

 
2 
t +2 ,...,σ 2

 , and we calculate the square root of their 
arithmetic mean:  

 
 
 

G 
t +1,t +T 

 
 
(3.9) 

 
This result is then annualized by multiplying by . 

 
 

There are other conditional volatility models, such as the GJR (Glosten et al. 1993), 
which allows for asymmetries in the behaviour of volatility discriminating positive and 
negative shocks. It is also possible to include seasonal effects in the model that improve 
the characterization of the series. However, in this paper, we will not pursue this line of 
analysis so intensely. 

 

Models (3.3) and (3.6) do not require further explanation. The volatility indexes are 
calculated by their respective markets. 

 

Although, our main goal is the univariate analysis proposed through models (3.1) to 
(3.6), we also perform a multivariate analysis taking all the three forecast models: 
historical volatility, conditional volatility and volatility index (the same in variance): 

 
 

σ R = α + β VX + γσ G + δσ H + u 
t +1,t +T t t +1,t +T t −(T −1),t t (3.10) 

(σ R )2  
= α + β  VX2  + γ (σ G )2  

+ δ (σ H )2  
+ u 

t +1,t +T t t +1,t +T t −(T −1),t t (3.11) 
 
 

3.2 Empirical findings 
 
The period analysed spans from April 1992 to December 2011, resulting in a sample 
with a total of 4997 trading days. As a previous step to performing models (3.2) and 
(3.5), the conditional variances must be estimated; the results for the GARCH (1,1) 
model in (3.8) are presented in Table 2. The analysis of the level of correlation of the 
standardized residuals using the Ljung-Box statistic and t-statistics are positive with 
regard to the modelling performed. Although the standardized residuals show  
significant autocorrelation (Ljung-Box Q(20), statistics exceed 31.5, at 5% critical 
value), the autocorrelations of squared standardized residual are no longer significant 
(Ljung-Box Q(20) statistics under 31.5). 

T 1 ∑ 
T 

σ 2 
t +k 

k =1 

,
 

σ = 
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MSE 

N t =1 

N t =1 

N i=1 t +1,t +T t +1,t +T 

Table 2. Estimated parameters and diagnostics of the GARCH (1,1) - model 
for S&P 100, S&P 500 and DAX in 1992-2012 period. 

Index C ω α 1 β 1 LBQTest  LBQTest2 

S&P 100 

S&P 500 

DAX 

0.00053 9.8E-07 0.0795 0.9144 
(4.5) (8.2) (16.8) (179.7) 

0.00053 8.9E-07 0.0780 0.9167 
(4.5) (7.5) (16.1) (174.7) 

0.00071 2.3E-06 0.0897 0.9002 
(4.7) (7.8) (14.5) (137.8) 

40.3 25.1 
 

40.7 21.3 
 

32.7 25.0 
 

Note: LBQTest y LBQTest2: Ljung-Box Q(20) statístics for the standardized residuals and 
the squared standardized residuals (31.4 is the critical value at 5%) 

 

All the previous models ((3.1) to (3.6)) are estimated by ordinary least squares (OLS). 
Table 3 depicts the estimated value for the parameters, their corresponding t statistics 
(calculated by the Newey and West (1987) method, since regression residuals are non- 
normal). 

The statistical loss functions used are those implicit in various criteria and tests. First, 
the coefficient of determination  R2  is compared across     forecasting methods.  Second, 
defining  the  regression  error as  e = σ R −σ  ̂R for  t=1,  …,N  we compute 

t +1,t +T t +1,t +T t +1,t +T 
 

various statistical measures of accuracy: Mean Square    Error, MSE =  1  ∑N
 

 
(et +1,t +T 

 
)2 ; 

Root  Mean  Square  Error,   RMSE = ;  Normalized  Root  Mean  Square  Error, 

NRMSE = 
 

RMSE 
Desv(σ Rt+1,t+T ) 

; Mean Absolute Error, MAE =  1  ∑N
 et +1,t +T and 

Heteroskedasticity-Adjusted MSE, HMSE =  1  ∑N
 (1−σ  ̂R / σ R )2 . 

 

Although the results of the regressions shown in Table 3 cannot be directly compared, 
since they refer to different markets (SPX or OEX in USA) or different periods (30 days 
or 45 days in Germany). We can, however, perform an intra-market analysis comparing 
forecasts. 
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Table 3. Prediction of 30 (45) day-ahead realised volatility (Panel A) and realised variance (Panel B) through 
regressions with historical volatility σH, conditional volatility GARCH(1,1) σG and volatility index. 

Market Model α β γ δ R 2 MSE   RMSE NRMSE MAE HMSE 
 

 

Panel A: Volatility Models [(3.1) to (3.3) and (3.10)] 

 σH 4.4 (5.9) 0.74 (14.4)   0.540 46.8 6.84 0.68 4.52 0.15 
 
S&P100 σG 1.0 (1.1) 0.90 (15.1)   0.584 42.4 6.51 0.64 4.27 0.13 

 VXO -1.4 -(1.6) 0.84 (18.0)   0.615 39.2 6.26 0.62 3.92 0.10 

 VXO, σG, σH -2.4 -(2.2) 0.57 (6.9) 0.76  (2.9) -0.38 -(2.2) 0.632 37.5 6.12 0.61 3.85 0.12 

 σH 4.1 (5.5) 0.75 (14.2)   0.556 46.0 6.78 0.67 4.41 0.14 
 
S&P500 σG 1.0 (1.0) 0.90 (14.8)   0.598 41.6 6.45 0.63 4.16 0.13 

 VIX -2.7 -(2.8) 0.92 (17.8)   0.610 40.4 6.35 0.62 3.90 0.11 

 VIX, σG, σH -2.9 -(3.0) 0.53 (5.2) 0.85  (2.9) -0.38 -(2.1) 0.634 37.9 6.16 0.61 3.80 0.12 

 σH 6.6 (9.8) 0.69 (19.7)   0.472 59.9 7.74 0.73 5.35 0.12 

DAX σG 0.7 (0.8) 0.92 (22.3)   0.541 52.0 7.21 0.68 4.99 0.11 
(45d) VDAX 0.6 (0.9) 0.91 (28.0)   0.598 45.6 6.75 0.63 4.48 0.08 

 VDAX, σG, σH -1.9 -(2.0) 0.85 (12.6) 0.51  (4.6) -0.36 -(3.8) 0.614 43.8 6.62 0.62 4.40 0.10 

 σH 5.7 (8.9) 0.73 (20.9)   0.529 56.8 7.54 0.69 5.24 0.13 

DAX σG 0.2 (0.3) 0.94 (22.9)   0.582 50.5 7.10 0.65 4.93 0.12 
(30d) V1X 0.2 (0.4) 0.86 (29.4)   0.645 42.9 6.55 0.60 4.44 0.09 

 V1X, σG, σH -2.0 -(2.2) 0.78 (13.0) 0.53  (3.9) -0.35 -(3.6) 0.653 41.9 6.47 0.59 4.39 0.09 

Panel B: Variance Models [(3.4) to (3.6) and (3.11)] 
 σ2 

H 117.0  (4.4) 0.69 (7.4)   0.473 211964 460 0.73 213 1.94 
 
S&P100 σ2 

G 52.0   (1.5) 0.86 (7.4)   0.518 193907 440 0.69 200 1.52 

 VXO2 -39.3  -(1.0) 0.77 (8.5)   0.506 198823 446 0.70 189 0.81 

 VXO2,σ2 
G,σ2 

H    -23.1 -(0.6) 0.34 (3.1) 0.90  (1.8) -0.32 -(0.9) 0.541 184506 430 0.68 185 0.44 

 σ2 
H 110.1  (4.0) 0.71 (7.2)   0.492 219903 469 0.71 207 1.86 

 
S&P500 σ2 

G 49.9   (1.4) 0.86 (7.2)   0.533 201843 449 0.68 194 1.47 

 VIX2 -75.5  -(1.9) 0.90 (8.7)   0.504 214592 463 0.70 190 0.92 

 VIX2,σ2 
G,σ2 

H      -23.6 -(0.8) 0.31 (2.0) 0.97  (1.7) -0.32 -(0.8) 0.548 195414 442 0.67 182 0.50 

 σ2 
H 220.0  (7.7) 0.61 (10.7)   0.366 275771 525 0.80 291 1.29 

DAX σ2 
G 85.6   (3.2) 0.84 (14.7)   0.459 235385 485 0.74 269 1.07 

(45d) VDAX2 41.6   (1.8) 0.88 (18.2)   0.509 213271 462 0.70 239 0.66 

 VDAX2,σ2 
G,σ2      -2.0  -(0.1) 0.78 (9.2) 0.51  (3.7) -0.34 -(2.9) 0.530 204511 452 0.69 236 0.62 

 σ2 
H 189.3  (8.4) 0.66 (13.2)   0.437 270225 520 0.75 283 1.56 

DAX σ2 
G 66.3   (2.7) 0.88 (15.1)   0.498 240585 490 0.71 264 1.28 

(30d) V1X2 30.4   (1.4) 0.78 (18.8)   0.563 209747 458 0.66 234 0.77 

V1X2,σ2 
G,σ2 

H       -3.8   -(0.1)  0.69    (8.2)   0.42  (2.1)  -0.26   -(1.7)   0.569    206583    455   0.66   232 0.41 
 

Note : t statistic of regression parameters calculated according to the Newey and West (1987) method. In bold the best 
univariate forecasting approach according to the loss function indicated in the column heading within each  market. 

 
 

In this sense, according to results in Table 3 – Panel A (volatility regressions), the 
accuracy of the forecasts for all the markets is best when volatility indexes are used to 
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forecast and worst when the historical volatility is used. Thus model 3.3 outperforms the 
other two equivalent models, both in terms of coefficient of determination and the 
different statistical measures of accuracy computed. As expected, the results of 
multivariate model (3.10) are slightly better, but they do not lead to significant 
improvements, as other authors as Chung et al., 2011 has noted before. 

 

Results for models (3.4) to (3.6) and (3.11), see Table 3 – Panel B (variance 
regressions), indicate that in the USA market, conditional variance slightly outperforms 
the volatility index as a predictor for the most of the used loss functions. However, in 
the German market, clearly the prediction ability of the volatility index is higher. Again, 
the loss functions for multivariate model are slightly better. 

 
 
We expected that volatility indexes model outperform the other forecasting models, in 
volatility and variance, but as we can see in Table 3 – Panel B (variance regressions), 
the VXO and the VIX indexes do not outperform the conditional variance regression 
model, showing a lower R2 than the GARCH. This is a contradictory result, especially if 
we compare our results with those obtained by Carr and Wu (2006), who get a higher 
coefficient of determination  for VIX  regression (0.4687) than for GARCH   regression 
(0.3576) in the period from January 2, 1990 to October 18, 2005. 

 
 
We compare our results with those found by Carr and Wu (2006), and we perform the 
regression in two sub-periods: one from May 2, 1990 to October 18, 2005, which is 
approximately the period used by Carr and Wu (2006) and the other from October 19, 
2005 to December 30, 2011. The results in Table 4 show that for the first sub-period the 
coefficient of determination is almost equal to that reported by Carr and Wu (2006). So, 
the difference detected could be due to the effect of the second sub-period in the whole 
sample. Indeed, for this sub-period, the GARCH estimation gives a higher coefficient of 
determination than VIX regression. In our opinion, this result is due to the 2008 
Financial Crisis that has increased the volatility of the market, which is better captured 
by GARCH than VIX, since the former makes an in sample forecast and adapts the 
coefficients to this fact. 

 

Table 4. Coefficient of determination for 
S&P500 variance regression in different sub-periods. 

Variance Forecast 
 

R 
  

_Sub1 
 
R 2 _Sub2 R 2 _All 

VIX2
 0.4581 0.4946 0.5038 

σ2 
G

 0.3647 0.5574 0.5333 
SubPeriod1: May 2, 1990, to October 18, 2005 
SubPeriod2: October 19, 2005, to December 30, 2011 
All: April 2, 1992, to December 30, 2011 

 
Finally, in order to assess the forecasting ability of each model, we have performed the 
Diebold-Mariano (DM) test. The null hypothesis is that the two models have the same 
forecast accuracy, and the alternative hypothesis is that model 1 and model 2 have 
different levels of accuracy. Should the latter be true, we test which of the models is 
more accurate. The results (in Table 5), for each index and pair of models indicates  that 



17  

the accuracy of the GARCH and the Volatility Index is greater than the accuracy of the 
Historical Volatility, in both volatility and in variance analysis. However, the relation 
between the accuracy of the GARCH model and Volatility Index model is not so 
straightforward. For the German Market, in volatility and variance, the Volatility Index 
model is more accurate than the GARCH model, but for the USA market except for 
VXO in volatility, the GARCH model and Volatility Index Model have the same level  
of accuracy. 

 
 

Table  5. Results  for  Diebold-Mariano test 
 

 
Same accuracy Greater 

accuracy 

 
Same accuracy Greater 

accuracy 

Index Forecasts DM p-value p-value Forecasts DM p-value p-value 

 σH  & σG 9.2326 <2.2E-16 <2.2E-16 σ2
H  & σ2

G 4.7702 <2.2E-16 <2.2E-16 
VXO σH  & VX 9.2465 <2.2E-16 <2.2E-16 σ2

H  & VX2
 1.8665 0.06203 0.03102 

 σG  & VX 3.7019 0.0002163 0.0001082 σ2
G  & VX2

 -0.7035 0.4818 - 
 σH  & σG 9.066 <2.2E-16 <2.2E-16 σ2

H  & σ2
G 4.3916 1.15E-05 <2.2E-16 

VIX σH  & VX 6.548 6.41E-11 3.20E-11 σ2
H  & VX2

 0.7275 0.4669 - 
 σG  & VX 1.210 0.1969 - σ2

G  & VX2
 -1.6224 0.1048 - 

 σH  & σG 10.486 <2.2E-16 <2.2E-16 σ2
H  & σ2

G 8.0202 1.30E-15 <2.2E-16 
VDAX σH  & VX 16.950 <2.2E-16 <2.2E-16 σ2

H  & VX2
 12.3426 <2.2E-16 <2.2E-16 

 σG  & VX 9.516 <2.2E-16 <2.2E-16 σ2
G  & VX2

 5.6592 1.61E-08 8.03E-09 
 σH  & σG 10.933 <2.2E-16 <2.2E-16 σ2

H  & σ2
G 7.2202 5.97E-13 <2.2E-16 

VX1 σH  & VX 17.282 <2.2E-16 <2.2E-16 σ2
H  & VX2

 11.3090 <2.2E-16 <2.2E-16 
 σG  & VX 10.928 <2.2E-16 <2.2E-16 σ2

G  & VX2
 7.113 1.299E-12 6.493E-13 

Same accuracy columns show the results for the two sided test. Greater accuracy columns show whether the 
second forecast has greater accuracy than first forecast (1st & 2nd) 

 
 
Using the encompassing test of Harvey et al. (1998), we test if each of the univariate models 
encompasses the others. The results in Table 6 show, for each market and pair of model, the six 
possible combinations. Each column shows the F statistic and the p-value of the test that 
forecaster 1 encompasses forecaster 2 as null hypothesis. The results show that for the USA 
market, the null hypothesis is rejected, so no model encompasses any other; that is, including 
new information via historical volatility, GARCH volatility or index volatility improves the 
forecast of realized volatility (the same applies to variance). In the German market, the results 
are the same, except for V1X for which the Volatility index model encompasses the historical 
volatility model, so historical volatility does not add any information that improves the forecast 
of realized volatility (variance). 



18  

Table  6. Results  for encompassing tests 
 

Panel A: Volatility Models [(3.1) to (3.3)] 
 
 

S&P 100 
 

S&P 500 
 
 
 
 

(30d) p-value <2.2E-16 8.076E-10 <2.2E-16 0.068 <2.2E-16 1.86E-06 
 

Panel B: Variance Models [(3.4) to (3.6)] 

σ2
H & σ2

G    σ2
G & σ2

H    σ2
H & VX2    VX2  & σ2

H    σ2
G & VX2      VX2      & σ2

G 

F 537.506 68.419 523.6 183.08 205.33 336.51 
S&P 100 

 
S&P 500 

 
 
 
 
 
 
 

4. OPTIMAL PREDICTION PERIOD 

As shown in the previous section, volatility indexes provide useful information about  
the expected volatility over the next standard period (30 or 45 days). However, to our 
knowledge, no research has been performed to test which is the optimal T-ahead. It may 
be the case that volatility indexes forecast the realized volatilities more accurately for a 
different period to 30 (or 45) days, for example a T, such as 10 days or maybe 40 days. 
To sum up, the question to answer is: what time horizon is the informational content of 
volatility indexes best adjusted for? 

 

This is not a trivial issue, since the volatility index is the average of two volatilities that 
are the closest to the maturity and each reflect different expectations of investors. 
Investors are not necessarily considering a 30 day standard period, thus it is likely that 
the best forecasting does not match a 30-day period. 

 

In order to test our hypothesis, we use models (3.3) and (3.6) from the above section,  
but the realized volatility is calculated following: 

 
 
 

R 
t +1,t +T    1   ∑ 

m 

m −1 (r t +k t ,t +T − r )2 

k =1 
σ = 

 σH  & σG σG  & σH σH  & VX VX & σH σG  & VX VX & σG 

F 603.403 70.379 1030.917 50.182 565.47 150.52 
p-value <2.2E-16 <2.2E-16 <2.2E-16 1.60E-12 <2.2E-16 <2.2E-16 

F 602.958 71.682 816.500 110.560 409.500 250.930 
p-value <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 

DAX F 765.944 9.174 1596.571 19.866 760.820 46.272 
(45d) p-value <2.2E-16 0.002467 <2.2E-16 8.49E-06 <2.2E-16 1.15E-11 

DAX F 671.666 37.889 1626.479 3.344 908.771 22.788 
 

p-value <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 
F 507.404 57.216 381.39 252.04 119.55 441.27 

p-value <2.2E-16 4.62E-14 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 

DAX F 895.938 33.374 1493.479 23.169 576.251 52.928 
(45d) p-value <2.2E-16 8.06E-09 <2.2E-16 1.53E-06 <2.2E-16 4.00E-13 

DAX F 659.8080 39.666 1443.4257 2.6834 751.6730 15.186 
(30d) p-value <2.2E-16 3.27E-10 <2.2E-16 0.1015 <2.2E-16 9.87E-05 
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considering T values from 5 to 90 days. In this way, for the entire period studied, we 
compute the realized volatility for each value of T, resulting in 86 series, one for each 
considered T. For each of these series, models (3.3) and (3.6) are tested for the four 
volatility indexes, which are not modified and have a constant maturity of 30 (or 45) 
days. 

 

In Figure 5, we represent the coefficient of determination R2 of the three regressions in 
the American market series, both for the VIX and the VXO, which show a similar 
behaviour with regard to the period they obtain the best forecast for. As can be seen in 
Figure 5, the best forecast is for 14 calendar days, although 30 calendar days is the 
period that the indexes are built for. 
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Figure 5. Coefficient of determination for different T day periods and regression models 

for VIX and VXO 
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Therefore, in view of the results (Figure 5), we can show that when a horizon of 14 days 
is reached, the additional information that is accumulated for computing the realised 
volatility no longer provides a substantial improvement in terms of prediction. Between 
13 and 17 days, the difference in the forecast accuracy is less than 1%, thus, it can be 
said that both indexes (VXO and VIX ) predict realized volatility better for this period, 
with the best fit being 14 days. 

 

A similar behaviour is detected (Figure 6) for the German market, where the optimum 
forecasting period ranges from 18 to 27 calendar days for V1X and between 16 and 26 
calendar days for the VDAX, in both cases the best forecast is recorded at 22 days. 
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Figure 6. Coefficient of determination for different T day periods and regression models 

for V1X and VDAX 
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There are several reasons that could explain this unexpected result. One reason may be 
based on the nature of the indexes themselves, specifically in the particular way they are 
designed. Also the results could be related to investors’ cognitive bias, which is largely 
analysed under the behavioural finance framework (Bird and Yeung, 2012). The 
underlying idea is that there is a time limit for which the investor is able to forecast the 
future price movements; that is, since volatility reacts quickly to any unexpected change 
in the market, it is not worth the investor trying to predict volatility for  anything but 
very short periods. 

 

A third explanation could be found in overreaction, previous empirical studies (Stein, 
1989; Poteshman, 2001; Christoffersen et al., 2013) have shown that implied volatilities 
of long-term options react quite strongly to changes in implied volatilities of short-term 
options and do not display the rationally expected smoothing behaviour. Given the 
observed strong mean-reversion in volatility, these findings have been interpreted as 
evidence for overreaction in the options market. The evidence contradicts the rational 
expectation hypothesis for the term structure of implied volatility. It is observed that 
market participants do not take this fully into account when pricing options. Longer  
term options implied volatilities move almost in lockstep with those on shorter term 
options, displaying less of the "smoothing" behaviour than is warranted. In this sense, 
longer term options overreact relative to shorter term ones: they place too much 
emphasis on innovations in short-term options’ implied volatility and too little emphasis 
on historical data that indicate that these innovations will not persist (Stein, 1989). 
Further, Poteshman (2001) concludes that stock market investors underreact to 
information at short horizons and overreact to information at long horizons. 

 

According to Lehnert et al (2013), overreaction is explained by risk aversion level and 
volatility dynamics. Thus, when investors are highly risk averse, and risk-neutral 
volatility is highly persistent, the overreaction is higher. In contrast, in periods of low 
risk aversion, long-term volatility should react less strongly to changes in short-term 
volatility because risk-neutral volatility is less persistent. In this sense, very short 
maturities and very long maturities options are being mispriced and the volatility index, 
which is a weighted measure of variance, holds this bias. We assume that the 
measurement errors of both maturities compensate each other at the optimal periods. 

 
5. CONCLUSIONS 

 
In this paper, we analyse 20 years of daily data on four volatility indexes at two markets 
(USA and Germany) and we obtain several interesting findings on the indexes’ 
behaviour. We find that the volatility indexes are better forecasters of realized volatility 
than the two, more frequently used, classical benchmarks (historical volatility and 
GARCH - conditional volatility), when the analysis is performed in terms of volatility. 
The results agree with those by other authors and confirm the better prediction accuracy 
of the volatility indexes. Moreover, the encompass test shows that for the American 
market, to include new information via historical volatility, GARCH volatility or index 
volatility improves the forecast of realized volatility (the same applies to variance), but 
for V1X the historical volatility (variance) does not add information that improves the 
forecast of realized volatility (variance). 
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Volatility indexes have been widely studied in the literature from different perspectives, 
but never before has the determination of the optimal forecast period of such indexes 
been attempted. Thus, we answer the question: Is the best forecast really 30 days ahead? 
We find there is no match between the index calculation period (usually 30 days) and 
the period of optimal prediction of realized volatility. In the American market, the 
results in terms of coefficient of determination suggest that investors do not attempt to 
predict future movements beyond two weeks. The explanation for this could be because 
volatility reacts quickly to any unexpected changes in the market; therefore, it is not 
worth the investor trying to predict volatility for anything but very short periods. In 
Germany, the optimum period is approximately three weeks. Both result are in line with 
overreaction analysis commented in the previous section but could also be due to the 
design of the indexes themselves. 
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