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Abstract: Water policies have evolved enormously since the Barth Summit (1992). These
changes have led to the strategic importance oEMa¢mand Management. The aim is to provide
water where and when it is required using the féewessources. A key variable in this process is the
demand forecasting. It is not sufficient to havegderm forecasts, but the current context requires
the continuous availability of reliable hourly prettbns. This paper incorporates artificial intelli
gence to the subject, through an agent-based systkase basis are complex forecasting methods
(Box-Jenkins, Holt-Winters, Multi-Layer Perceptrotetworks and Radial Basis Function Net-
works). The prediction system also includes dataingi oriented to the pre and post processing of
data and to the knowledge discovery, and othertag&hereby, the system is capable of choosing at
every moment the most appropriate forecast, regokeny low errors. It significantly improves the
results of the different methods separately.
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1 Introduction

Water is a basic resource for human life and ferdbonomic growth of any region. The tra-
ditional water management is based on extractig water resources and making them
serve human purposes. This way, large amounts ldfcpononey have been invested to fi-

nance water projects in order to stimulate the esoa development. However, this ap-



proach, which is based on the supply increasebhesdy taken into account that water is a
finite and fragile resource, whose availability degs on the functioning of the hydrological
cycle. For this reason, the concept of Water DenMadagement has significantly evolved
over the last years. Especially since the EarthrSitneld in Rio de Janeiro (1992), due to
the pressures generated by the population grolghyitbanization and the industrialization,
the strategic importance of WDM is understood, al as its relevance in the efficiency of
municipal management (Mohamed and Savenije, 2@@pks (2006) proposes an opera-
tional definition of WDM with five components: (I¢ducing the quantity or quality of wa-
ter required to accomplish a specific task; (2uatilpg the nature of the task so it can be ac-
complished with less water or lower quality wat@) reducing losses in movement from
source through use to disposal; (4) shifting tirhese to off-peak periods; and (5) increas-
ing the ability of the system to operate duringudyiats.

A key aspect in any water management plan is derfaadasting. An accurate forecast can
minimize the water used to meet demand, but besi@déso results in a reduction of the en-
ergy used in the process of catchment, purificasiod distribution of water and it also pro-
duces a saving in the resources spent on sizingttinage and distribution system. The tra-
ditional approach to water management required d¢myg term forecasts expressed in
annual demands or even decades (Willsie and R@atd). They were enough for the design
of the system (capacity of the tanks, dimensionhef pipes and connections between the
various nodes) and for the development of plansneeting the demand. Nevertheless, with
the passing of time, this horizon has become shdrtdact, for attaining high efficiency in
the WDM, reliable short-term forecasts are requii@dto et al., 2007). Daily forecasts in-
volve the implementation of supply plans, by settine system to that effect. The next step
is hourly water forecasting. According to Herretaak (2010), the ready availability of
hourly predictions of water demand is crucial doghree main reasons: it allows to deter-
mine the optimal regulation and pumping systemsng®et the predicted demand, which
promotes energy efficiency (operative point of ieitvallows to combine water sources in
the most appropriate way to achieve a preset stdndahe supply water (quality point of
view); and it allows to detect failures and netwto&ses through the comparison of the ac-

tual and expected flow (vulnerability point of vigw

The literature on the subject contains several watkshort term demand forecasting. The

first one was written by Maidment et al. (1985),ommsed statistical models (in particular,
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ARIMA methodology) to express the daily water deohas a function of ambient tempera-
ture and volume of rain. In a later work, the saamé¢hors (Maidment and Miaou, 1986)
proved its efficiency for nine American cities. @trauthors (e.g., Shvarster et al., 1993; An
et al., 1995) followed this line, using statisticaéthods and climatic factors in the predic-
tion. Lertpalangsunti et al. (1999) were pioneershie introduction of artificial intelligence
(Al) in the study. They developed a complex foréogssystem, which integrated fuzzy
logic, artificial neural networks (ANNs) and casasbd reasoning, which was tested with
high efficiency to forecast the daily water demamdhe city of Regina (Canada). Msiza et
al. (2007) introduced support vector machines (SWMhe subject, in order to compare its
performance with ANNSs, using two different struetsir Multi - Layer Perceptron (MLP)
and Radial Basis Function (RBF). They conductedstively on the daily demand of the
province of Gauteng (South Africa) and the ANNspautormed the SVM. Herrera et al.
(2010) further reduced the time horizon and thegluwated six predictive models (ANNS,
projection pursuit regression, multivariate adaptiggression splines, SVM, random forests
and a weighted pattern-based models) in forecagtmfpourly demand of the city of Valen-
cia (Spain). The authors justify that in this medenvironment the ready availability of
hourly water demand predictions is crucial. Biopimsed algorithms have also been used in
other aspects around WDM —e.g. Liu and Lv (200®duthe particle swarm optimization

algorithm to forecast the residual life of undergrd pipelines.

On the one hand, one of the main conclusions ofitdr@ture review is that these advanced
methodologies are proven to give a great performamdthe forecasting of short term water
demand, both daily and hourly. There are not bftedinces between their results, as the
choice of the optimal one depends on the charatitiof the study period and its recent
past. On the other hand, most of the authors us®iit factors in the predictions, as they
lead to improve the results. However, the justiimetavailability of these climatic factors in
order to perform the hourly forecasting could beuadle difficult to overcome by a real-
time WDM system. Therefore, considering those fi@ctmuld be a constraint for the im-
plementation. This way, Nasseri et al. (2011) devetl a model based on Al techniques
(genetic algorithms and Kalman filter) with excellegesults, taking only in consideration

data from previous demand.

Under these circumstances, this paper shows thelaeaent of a system for the real-time

water demand forecasting based on Al techniquese Mpecifically, we use an agent-based



architecture to construct the system, whose caé¢har advanced forecasting agents but it is
also formed by other agents which carry out othgpdrtant functions, which will be de-
scribed next. The system continuously receivesegftom water hourly demand and it is
capable of choosing the most reliable forecastedriique at each moment. This way, it
could be implemented in different scenarios, dmg the ability of adapting to them. So, af-
ter the literature analysis, the idea of this &tis to combine different tools in order to ob-
tain a forecasting system with greater accuracgnevithout the availability of real-time in-
formation about the climatic factors. The great aadage of using the agent-based
architecture is that this forecasting system camtegrated into a larger management sys-

tem built under the same principles.

Our investigation line has been the following: Rtpblem world and problem statement; (2)
Clarify the process; (3) Devise conceptual modél;¥evelopment of the forecasting meth-
ods; (5) Implementation of the real-time water dechBbrecasting system; (6) Tests and ob-
taining results; and (7) Problem analysis and @edenclusions. Such work structure is
spread across this paper, which is divided into foain sections, including this introduc-
tion. Section 2 describes the forecasting systesh We have created, with the different
agents that form it and their purpose, the striectbat encompasses all and the relationships
between them. Section 3 contains the numericaltseafier testing the system with hourly
water demand time series and the discussion thefemdlly, section 4 presents the main
conclusions that we have obtained based on thedstdtjectives, as well as the future lines

of research.

2 Description of the Real-Time Water Demand For ecasting System

Figure 1 shows schematically the forecasting systexnwe have devised and implemented.
It consists of nine different agents: the Interf@gent, the Storage Agent, the Data Mining
Agent, the Fitness Agent and the five Forecastiggrs (Naive Agent, Box-Jenkins Agent,
Holt-Winters Agent, MLP-NN Agent and RBF-NN Agent).should be noted that we are
using forecasting techniques of different naturee System receives hourly data about the
water demand from the measurement equipments anasstihe real-time forecast to the

user, in order to the decision-making process. adent-based approach also allows its con-
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nection to a larger management system. Below, waildbe functionality of each agent,

and the relationships among them.

2.1 Transmission Agents

The Interface Agentonnects the forecasting system with its envirammehat is to say, it
acts as the intermediary between the rest of thatagand the outside with the aim of reach-
ing the homogeneity in the agent-based system., Thwerks in a double way: (1) it trans-
mits the demands received hourly from the measunesguipment to the data base; and (2)

it transfer the best forecast at each hour to theide.

The Storage Agentnanages a database attached to the system teattsawly the values of
both actual demands and the forecasts performetiebfive agents. Besides, it also saves
the best forecast performed at every hour. It esgary to store all this information (not
only the best forecast) because past forecastsnitilence in the selection of the best fore-
cast in future. Therefore, ttf®orage Agenis in permanent contact with th&terface Agent
and theData Mining Agento store and move information from the outsident ather fore-
casting agents (demand flow), and in the opposieztion (forecasting flow).

The Data Mining Agentarries out the pre processing of the informasitimed in the data-
base and the post processing of the predictionsh®one hand, this involves extracting the
last 1020 hourly demands (6 weeks + 12 hours, seos 2.9) from the database. It has
proven to be a suitable time period, in terms ehidying the seasonality and trend of the
series. On the other hand, with the aim of perfagithe neural networks forecasting, it in-
volves the creation of thirteen time series with temands displaced (displacement from 1
to 4, from 24 to 28 and from 168 to 172 hours, gitlee double periodicity of the series, and
because the other values have not proved to bédisag) to find inference rules and try to

explain each demand based on past data. In additieata Mining Agenis connected



with the Forecasting Agent, to perform transforimagi on the variables (e.g., logarithmic,

differentiation or quantification of non numericadriables) when it is needed.

2.2 Forecasting Agents

The Forecasting Agents are the real core of thietima water demand forecasting system.
We are using naive models, classical statisticahats and Al-based techniques, in order to

try to combine the advantages of each alternative.

The Naive Agenperforms the demand forecast using a naive methbath estimates the
hourly demandﬁz) as the demand in the previous hd#(1 ), adjusted by the increase (or
decrease) in the demand in the same time intefwakegprevious weekBRt-168 — Di—149),

by (1). This is a very simplified model —and heriiceequires a insignificant calculation

time— but it offers good performance in regulaieseriike the one we have.

5: =ve=Dr 3+ D168 — Di_16a) (1)
The Box—Jenkins Agenperforms the forecast using the ARIMA methodold®px and

Jenkins, 1970). These models can be expresseldya)(P.D, Q).  where the parame-
ters are the orders of autoregression (p, P),rédifteation (d, D) and moving average (q, Q).
Lowercase variables are not seasonal componentke thle uppercase ones are seasonal,

with periodicity n. In our case, n=168. These medminsider that the future value of the

differentiated variable ﬂ(dDz) can be expressed as a function of past obsemgatio
(Dt-i.1 € [L.nl) and a random erroftci- 1 € -aly |t is expressed in (2), whete is the
differentiation operatory is the constant mode#: are the parameters associated with

autoregression, arfli are the parameters associated with the movinggeer

— v P q J
A1, — v — d d o (2
A" D, =yve=v+ @A D:_; + Prnep B De_inepy— '9_; Se—j — Emn—q Fr_r )
i=1 k=1 j=1 m=1

The method of obtaining the statistical mofie!d. a)(P.D, Q). associated with each time
series is based on the sequential process ofdé€h}ifying the possible model; (2) parameter

estimation; and (3) validation. It is repeated luthie model is validated through their auto-



correlation functions and until its forecasts aadidated by a given error criterion. In our
case, theBox—Jenkins Agergeeks the model that best fits the input time seusing the
following statistics for the comparison of the diént proposed models: goodness-of -fit ac-
cording to the criteria of MAPE; residual simpleg@orrelation function (ACF); and resid-
ual partial autocorrelation function (PACF). Thethwal of obtaining the model and calcu-

lating the coefficients is described in more ddataBox and Jenkins (1970).

The Holt—Winters Agentises the Holt—Winters exponential smoothing metioofbrecast.

Its base is a simple exponential smoothing, whigiress the demand as a weighted average
between the demand and the forecast of the prepeusd. Holt (1957) modified this
model so that it can be applied in trended senes\Viinters (1960) adapted it for series with
seasonality. There are two main Holt-Winters madad¢pending of the type of seasonality:
(1) Multiplicative; and (2) Additive. These modealan be mathematically expressed by (3)

and (4), in the previous order, wheserepresents the forecalt-= is the estimate of the
deseasonalized level or overall smoothing in tlewipus periodGr—= is the estimate of the

trend or smoothing of the trend factor in the poesi period, an&:-= is the estimate of the

seasonal component or smoothing of L (the seasodak) periods ago. In our case, L=168.

pol

L

=ye=(Re—y+ G y)- S s 3)

g

5: =Ve=Re s+ Gy + 5 (4)

It should be noted that each one of the previouarpeters depends on a different smooth-
ing constant. The procedure for the estimates afahparameters is detailed, among others,
in Kalekar (2004). In our case, thidlt—Winters Agentooks for the model that best fits the

input time series using the same statistics forctmaparison of three alternatives (the multi-
plicative model, the additive model, and the sinrg@asonal model, where there is no trend)

as the one used in tB®x-Jenkins Agent.

The MLP-NN Agentind theRBF—NN Agenéstimate the hourly demand through an Artifi-
cial Neural Network (ANN) with three levels: an itdayer (predictor variables, which are
obtained by means of ti@ata Mining Agent a hidden layer (composed by nodes that, dur-

ing optimization process, attempt to functionallgprthe model inputs to the model outputs)
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and an output neuron (variable to predict). Figirghows schematically the general struc-

ture of the ANN that we have used.

In both cases, the data available for each fored@8 hourly water demands) are ran-
domly separated into two groups. 70% is orientethéobatch training of the network, by
means of the back-propagation algorithm. The rem@iB0% has been directed for verify-
ing the network. We use different stopping crit§n@aximum number of steps without re-
ducing error: 1000; maximum workout time: 1 minut@nimal relative change in training

error: 0.0001; minimal relative change in erroererining: 0.001). The steps for develop-
ing the ANNSs are similar to those detailed in Pe@l. (2008).

There are various ANN architectures. On the onalhdre MLP—NN Agenfocus on the
Multi-Layer Perceptron (MLP). These are networkat thave more than one layer of adap-
tive weights. A MLP has three layers of units takialues in the range 0-1, and each layers
is nourished with the previous ones. Any numbeweighted connections can be used, but
MLPs with two weighted connections are very muchatde of approximation just about

any functional mapping (Bishop, 1995). The MLP bamtmathematically represented by (5),

where ¥: represents the output (forecadtueer represents de output laydmmer repre-

sents the input layer transfer functi®¥s represents the weights and biade® [(1 17] re-

fers to the input neurons an& [1,n] refers to the hidden neurons) dfldepresents the z-

th layer.

M

4 17
Er = ¥: = fourer \JZ Wy o fimner (Z ”"'_.i':l“l'l “Xit H"_.i'ul"l'l) + ”-"lul“j’ll (5)

j=a i=1

On the other hand, tHRBF-Agenperforms the forecast according to the Radial Bagrsc-
tion (RBF) Architecture. In the RBF, the activatiohthe hidden unit is determined by the
distance between the input vector and the prototgoor, leading to a two stage procedure

(Bishop, 1995): (1) Determination of the centreéhd network using unsupervised methods;
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and (2) Determination of the final-layer weightende, the RBF networks provide an inter-

polation function —called basis functions—, whiasges through each and every data point.
It can be mathematically represented by (6), wi¥ereepresents the output (foreca¥t}y

represents the weights and biades [1.n] refers to the hidden neurons) &fidrepresents

the activation function of the output layer.
Be=ye= ) wis-o; (6)
j=1

2.3 Fitness Agent

The Fitness Agenselects the best forecast at each moment throwglkdmparison of the
last demands and the forecasts performed by tieeForecasting Agents. It uses the crite-
rion of the minimum MAPE (mean absolute percentager), introduced by Makridakis
(1993). After evaluating different options, we hal#ained the best results when the MAPE
is calculated for the last 12 hours, so this ageets this number for the selection. Figure 3
synthesises the time horizon of the forecastinggss, and the role of tHatness Agent

within the whole system.

3 Numerical Application and Discussion of the Results

In order to test the forecasting system, we haeel assimulated time series with more than
15000 data, which represents the hourly water ddrirathe city of Gijon (a municipality of
300,000 inhabitants in the north of Spain) duridign2onths (years 2009 and 2010). To ob-
tain it, we have based on the monthly demand otitye a distribution model of hourly wa-
ter demand for a city in south-eastern Spain (Hare¢al., 2010), and random parameters. It
should be noted that in this city, 71% of invoicealter is oriented to domestic use, 23% of

this water has an industrial use, and the remai®%gds managed by the city council.
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The time series of the hourly water demand is aptexnseries with a double seasonality.
On the one hand, it has a daily periodicity, nameagry 24 hours the series has a similar
structure. There is a sharp decrease from 19h 02k when demand stabilizes around a
daily minimum, until 06h. Then, it grows until 11amhere it sets a first local maximum.
From there, demand undergoes a slight declinedal lminimum at 14h, at which time it
surges to a second local maximum at 19h. The mesdidimes are approximate and vary
according to the season of the year. On the othed,hthere is a weekly periodicity (168
hours), as the structure is repeated every wedk, avsignificantly lower consumption on
Saturdays and even more on Sundays. Moreoverjnigeseries does not remain in a con-
stant range, but it exhibits different trends irittomean and variance, throughout the year.

To illustrate the explanation, figure 4 represeéws parts of the time series.

The data of the hourly water demand time seriesbeadivided into three groups: (1) work-
ing days; (2) weekend; and (3) holidays (and dagsirad them, whose forecast could be
crucially affected by holidays). After several &gsfable 1 presents the numerical results for
two standard cases of each group. In every tesstaved out the MAPE of the forecast per-
formed by the system in the last column (ForecgsMiAPE), which is chosen between the
various methods and corresponds to the Foreca&tegt with minimizes the MAPE (Fit-
ness MAPE). This Forecasting Agent is stood otihésecond column.

In the forecasting of working days, all methodsiee low forecast errors (between 1.12%
and 2.56% for the two tests shown). Thereforepfalhem are capable of understanding the
running of the series quite accurately. Even thev&Agent, which adopts an oversimplifi-

cation, provides good results given the regulaunmeadf the series. The statistical models of

Box-Jenkins (ARIMA) and Holt-Winters (exponentiahgothing) generally improve the re-
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sults. Nevertheless, as expected, the introduabiorrtificial intelligence in the model,
through ANNSs, causes a greater decrease in the MARE results of the RBF and MLP
structures have a similar goodness-of-fit —theraassignificant difference in its perform-
ance. By way of example, Figure 5, which repres#rgsforecasting time period for test I,

shows what we have explained.

When the system works on weekends, all methodgase substantially the error gener-
ated. This is easily understandable, since theentte of the working days on the model is
much higher. Statistical models in this case ase febust, as they show high variability in

the goodness of their results. In some tests, #dobyeve low forecast errors but in others
they are not able to accurately grasp the sertes.RBF structure in ANNs shows a similar

effectiveness. However, ttddLP—-NN Agenbffers the best performance, reaching a MAPE
less than 3% in all cases analyzed. By way oftiiéu®n, Figure 6 shows the demand and

the forecasts performed by the various agentssnilll.

The problems of statistical models are more evidenholidays and days around them. On
the one hand, the system is not capable of adagsngtructure in atypical days, while
ANNs can manage it (se¢est \J. On the other, the presence of a holiday in tnesdefore
the forecasting period introduces a distortionha series model that deviates slightly the
forecast (sed¢est V). Therefore, in this last group, the differencetween the different
methodologies are amplified and Al allows improvisigongly the forecast. This can be
shown in Figure 7, which displays the demand ardfdinecasts performed by the various
agents intest VI In holidays, again, the forecasting of ANN witH_®1 structure is more ro-
bust than the ANN with RBF structure.
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4 Conclusionsand Next Steps

This paper presents an application of agent-bassitecture in hourly demand forecasting,
a key aspect in Water Demand Management (WDM).cIines of the system are advanced
statistical models (ARIMA and Holt-Winters exponahtsmoothing) and artificial intelli-
gence (Al) techniques, such as Multi-Layer Peragp(MLP) and Radial Basis Functions
(RBF) Artificial Neural Networks (ANNSs). Tests thate have carried out demonstrate the
effectiveness of the real-time forecasting systamich selects at each moment the best
forecast. Obviously, there is no way to ensure thatsystem always selects the prediction
that will generate the lower error in future, bests show that if the forecasting method se-
lected is not optimal, it is closer to the optimufhe goodness-of-fit of each technique de-
pends on the characteristics of the forecastingpgealthough MLP is the most robust

method.

The multi-agent environment draws a very approgragtproach to tackle the problem, as
the system provides at all times the forecast witielnderstands as the best. Under these
circumstances, it allows the addition of new ingelht forecasting tools by means of new
Forecasting Agents, without varying the rest of sigetem. In addition, this approach has
enormous potential in increasing its functionalligcause it allows to complete the study by
adding new agents. This way, this real-time watanand forecasting system will be inte-

grated in a larger system aimed at optimizing tia@agement.
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Fig. 1 General outline of the real-time water demand faséng system, with the various agents that form it
and the relationships among them (two main flows) &ith the outside.
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Fig. 2 General structure of the ANN with its three laygnput layer, hidden layer and output layer). Tie 1
predictor variables are: the day and hour of theatel to forecast, a binary variable that differzes holi-
days and working days, and 14 past values relatétetseasonality of the time series (frpffal) to y(t-4),
fromy(t-24)to y(t-28), from y(t-168)to y(t-172). The number of neurons in the hidden layer ddpem the
time series. The only output neuron is relatedhéoviariable to predict, so that it performs thefast.



18

m3

3500 -
3300 -
3100 -

2900 -

2700

2300 -
2100 -
1000 -

1700 -

1500

Forecast
(System’s Output)

l Jli i

Training & Validalion — 1008 hours Selection — 12 hours
(Forecasting Agents) (Fitness Agent) Now

Fig. 3The last 12 hours (both the demands and the fareofithe five agents) are used to determine tlsé be

forecasting method

in each moment, while the pre/itD08 hours (only the demands) are used foraire t

ing and validation of the different forecasting hwats, in order to choose the most appropriate madsch
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Fig. 4 Two extracts from the time series (values in cubéters / hour). The top graph (time horizon: seven
weeks) brings evidence of the weekly periodicitd &a trend, and the graph below (time horizon: eeek)

shows the daily periodicity of the time series.
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Fig. 5 Actual demand and various predictions for the fasting period inest I(values in cubic meters / hour).
The MLP-NN forecasts is the one provided by théesysfForecasting MAPEL,14%), but the different
among the various methodologies are much smalker iththe other cases studied.
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Fig. 6 Actual demand and various predictions for the fasting period irtest Il (values in cubic meters /

hour). The MLP—NN forecasts is the one providedhgysystemKorecasting MAPE2,95%).
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Fig. 7 Actual demand and various predictions for the fasting period inest VI(values in cubic meters /
hour). The statistical methods have big difficudtte forecast accurately. The MLP—NN forecast ésahe
provided by the systenkérecasting MAPE2,98%), although the RBF-NN forecast is slightftbr.
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Table 1 Results of the numerical test. It contains theofeihg five columns: (1) the beginning of the time-p
riod to predict (previous 1020 data are used bystfstem to forecast); (2) the forecasting methgdnbans of
the Agent which performed the forecast; (3) its mfgature chosen by the agent (that is to sayHible
Winters model chosen, the ARIMA Model, and the cfinte of the ANN); (4) the MAPE calculated by the
Fitness Agen{12 previous demands) and which determines itscieh; and (5) the MAPE obtained in the
prediction made by each agent. In order to caleutsForecasting MAPEwe use the following 12 forecasts,
with the aim of looking for consistency in our résu

Forecasting Period  Forecasting Agent Features SStNAPE Forecasting MAPE
Test | Naive - 1,94% 1,60%
Thursday Holt-Winters Simple seasonal 2,56% 1,17%
May 14, 2009 Box-Jenkins (0,1,6)(0,1,4&) 2,26% 1,25%
04h MLP-NN 17-8-1 1,27% 1,14%
(working day RBF-NN 17-10-1 1,48% 1,39%
Test Il Naive - 1,74% 1,98%
Wednesday Holt-Winters Simple seasonal 1,76% 1,45%
Sept. 8, 2010 Box-Jenkins (0,1,3)(1,1.2) 1,87% 2,21%
16h MLP-NN 17-9-1 1,40% 1,52%
(working day RBF-NN 17-10-1 1,12% 1,53%
Test Il Naive - 3,59% 3,93%
Sunday Holt—Winters Additive 4,34% 3,03%
June 7, 2009 Box—Jenkins (0,1,3)(0,1,4ky 3,30% 3,22%
12h MLP-NN 17-6-1 2,83% 2,91%
(weekenjl RBF-NN 17-8-1 4,29% 3,85%
Test IV Naive - 3,51% 2,50%
Friday Holt—-Winters Multiplicative 3,69% 2,62%
Feb. 5, 2010 Box-Jenkins (1,1,5)(0,1,4&) 2,63% 8,04%
23h MLP-NN 17-9-1 2,39% 2,48%
(weekenjl RBF-NN 17-11-1 4,28% 1,82%
TestV Naive - 5,38% 3,19%
Tuesday Holt-Winters Simple Seasonal 23,55% 6,09%
Dec. 8, 2009 Box—Jenkins (1,1,1)(1,1.) 24,44% 7,46%
18h MLP—-NN 17-4-1 3,74% 2,19%
(holiday) RBF-NN 17-8-1 6,20% 1,78%
Test VI Naive - 4,37% 3,22%
Wednesday Holt-Winters Additive 5,86% 8,65%
Oct. 13, 2010 Box—Jenkins (2,1,12)(0,1 k) 8,04% 11,48%
04h MLP—-NN 17-11-1 2,98% 2,03%
(after holiday RBF-NN 17-7-1 3,79% 2,00%




